1	(a	(i)	element cannot be broken into anything simpler by chemical means OR made up of one type of atom only	[1] [1] [2]
		(ii)	compound two or more different elements chemically bonded together	[1] [1]
		(iii)	mixture two or more substances not chemically joined together	[1]
	(b)	(i)	mixture	[1]
		(ii)	compound	[1]
		(iii)	element	[1]
	(c)	con	ductivity (of heat or electricity)	[1] Total: 9]
2	(a	(i)	positive and negative ions regular pattern / opposite charges closer than the same charge	[1] [1]
		(ii)	so that charges cancel / ions may not have the same charge	[1]
		(iii)	Any three of: high melting point or boiling point hard brittle soluble in water / insoluble in organic solvents conduct (electricity) in liquid state or in aqueous solution / non-conductors or poor conductor (when solid)	
			poor conductor (when solid)	[3]
	CO		rrect formula rect charges and 2o around oxygen	[1] [1] [1]
			Γ	Total: 9]

3	(a)	weak forces between layers or between (hexagonal) rings / weak bonds between layers or between (hexagonal) rings / Van der Waals forces between layers or between (hexagonal) rings;			
		(layers/rings) slip/slide (over each other) / move over each other [1]			
	(b)	strong bonds (between atoms) / covalent bonds (between atoms); [1] all bonds are covalent/strong / each atom covalently bonded / carbon (atoms) is bonded to four others / bonds are directional / (atoms are arranged) tetrahedrally; [1] accept: carbon has four bonds			
	(c)	graphite has delocalised / mobile / free electrons; [1] diamond (outer shell) electrons used / fixed / localised in bonding / no delocalised electrons /			
		no mobile electrons / no free electrons; [1]			

ŧ	(a	(1)	boiling point is below 25 °C; boiling point above 25 °C; accept: argument based on actual values note: 25 °C is between mp and bp = [2]	[1] [1]
		(ii)	strontium loses 2e; sulfur gains 2e;	[1] [1]
		(iii)	hydrogen chloride / hydrochloric acid; accept: sulfurous acid or sulfur dioxide	[1]
		(iv)	molten strontium chloride has ions/ionic compound; which can move; sulfur chloride has no ions / only molecules / molecular / covalent;	[1] [1]
	(b)		strontium carbonate does not dissolve / no effervescence; note : not just reaction is complete	[1]
		(ii)	to remove excess/unreacted / undissolved strontium carbonate;	[1]
		(iii)	water of crystallisation needed / $6H_2O$ in crystals / would get anhydrous salt / would not get hydrated salt / crystals dehydrate; not: just to obtain crystals	[1]
	(c)	nun	nber of moles of HC l used = 0.05 × 2 = 0.1 nber of moles of SrC l_2 .6 H ₂ O which could be formed. = 0.05	[1] [1]
	mass of one mole of $SrCl_2.6H_2O$ is 267 g theoretical yield of $SrCl_2.6H_2O = 0.05 \times 267 = 13.35$ g percentage yield = $6.4/13.35 \times 100 = 47.9\%$ accept: 48% allow: ecf		[1 [1]	
				[Total: 15]

(a (i) Sb; (ii) Xe / B; (iii) Sr/Te/A/D; (iv) Sn and I / E and F; (v) Sr / A; [5] (b) any two from: physical niobium is harder; stronger; higher mp/bp; higher density [2] note: there has to be a comparison any two from: chemical niobium is less reactive; forms coloured compounds; forms complex ions; its compounds have catalytic properties; has more than one oxidation state; has more than one valency electron; [2] note: the response has to refer to or compare properties of both elements

[Total: 9]

6	(a	(i)	Zn + 2HC $l \rightarrow$ ZnC l_2 + H ₂ not balanced = [1]	[2]
		(ii)	3 bps and 1 nbp around As; 1 bp each hydrogen atom;	[1] [1]
	(b)		(97.4/75 =) 1.3 and (2.6/1 =) 2.6; empirical formula AsH ₂ ; note: correct formula with no working = [1]	[1] [1
		(ii)	As_2H_4 ;	[1]
		(iii)	H ₂ As-AsH ₂ / AsH ₂ -AsH ₂ ;	[1
	(c)	(amide / peptide;	[1]
		(ii)	named strong acid / alkali; allow: HC1/ enzymes	[1]
		(iii)	amino acid; allow: peptides	[1]
	(d)	(Cu and As have more than one oxidation state / valency;	[1]
		(ii)	$3Cu^{2+} + 2AsO_4^3 \rightarrow Cu_3(AsO_4)_2$ either side correct = [1]	[2]
			either side correct – [1]	[Total: 14]

(b) (i) CO₂ already formed (from C burning or from CaCO₃); [1] then carbon reacts with carbon dioxide; C + $CO_2 \rightarrow 2CO = [2]$ If equation not balanced = [1] (ii) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ [2] not balanced = [1] not: reduction by carbon (c) to remove / neutralise silica / silicon dioxide / silicon(IV) oxide / sand; [1] reacts with limestone to form slag / calcium silicate; [1] $CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$ [1] or CaO + SiO₂ →CaSiO₃ or $CaCO_3 \rightarrow CaO + CO_2$ (d) galvanising / galvanisation / sacrificial protection; [1] (ii) sacrificial protection / zinc is sacrificed; zinc corrodes rather than iron; zinc is oxidised in preference to iron; zinc reacts with oxygen and / water in preference to iron; zinc more reactive / electropositive than iron; zinc loses electrons more readily than iron; electrons move on to iron

[1]

[3]

[Total: 12]

any three

(a C + $O_2 \rightarrow CO_2$